organic papers

Acta Crystallographica Section E Structure Reports Online

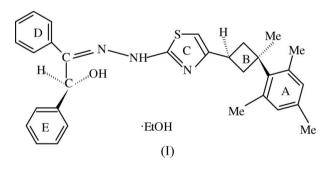
ISSN 1600-5368

Çiğdem Yüksektepe,^a Nezihe Çalışkan,^a Ibrahim Yılmaz^b and Alaaddin Çukurovali^b*

^aDepartment of Physics, Art and Sciences Faculty, Ondokuz Mayıs University, 55139 Samsun, Turkey, and ^bDepartment of Chemistry, Art and Sciences Faculty, Fırat University, 23119 Elazığ, Turkey

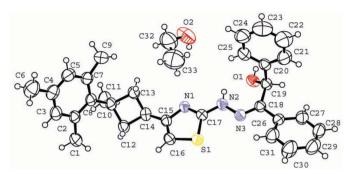
Correspondence e-mail: yuksekc@yahoo.com

Key indicators

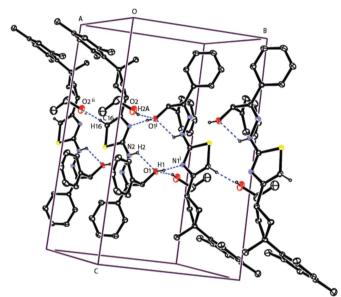

Single-crystal X-ray study T = 296 KMean $\sigma(\text{C}-\text{C}) = 0.005 \text{ Å}$ R factor = 0.050 wR factor = 0.107 Data-to-parameter ratio = 14.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. 2-{[4-(3-Mesityl-3-methylcyclobutyl)thiazol-2-yl]hydrazono}-1,2-diphenylethanol ethanol solvate

In the title compound, $C_{31}H_{33}N_3OS \cdot C_2H_6O$, the dihedral angle between the least-squares planes of the thiazole and mesityl rings is 77.3 (1)°. There are intramolecular N-H···O hydrogen bonds and intermolecular O-H···N/O and C-H···O interactions. Received 23 May 2006 Accepted 6 June 2006


Comment

Various hydrazone compounds possess strong bactericidal, herbicidal, insecticidal and fungicidal properties (Sahni et al., 1977). In addition, hydrazones have analytical applications (Jensen & Pflaum, 1967). Hydrazones have been widely studied as chelating ligands for the spectrophotometric and fluorimetric determination of trace metal ions (Katyal & Dutt, 1975; Galiano-Roth & Collum, 1988). Most Schiff bases have antibacterial, anticancer, anti-inflammatory and antitoxic activities (Williams, 1972), and the sulfur-containing Schiff bases are particularly effective. Benzothiazolium groups have been used in organic dyes as either electron-withdrawing or electron-donating substituents, depending on whether the N atom is cationic or not (Zollinger, 1991). Various thiazole derivatives show herbicidal, anti-inflammatory, antimicrobial and antiparasite activity (Koparır et al., 2004; Ahmedzade et al., 2003) and also liquid crystal properties (Coghi et al., 1976). In this paper, we report the structure of the title compound, (I).


A view of the asymmetric unit of (I) is shown in Fig. 1, and selected geometric parameters are given in Table 1. The central NH-N=C-C fragment is strictly planar. The molecule adopts a Z geometry about the azomethine C=N double bond, the N2-N3=C18-C19 torsion angle being 1.3 (5)°. The Z configuration allows the formation of an intramolecular N-H···O hydrogen bond (Table 2). The angles between mesityl ring A, thiazole ring C and benzene rings D and E are $A/C = 77.3 (1)^\circ$, $C/D = 20.2 (2)^\circ$ and D/E =85.8 (1)°. The steric interaction between the substituent groups on the cyclobutane ring causes significant deformation

© 2006 International Union of Crystallography All rights reserved

Figure 1

The asymmetric unit of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

The crystal structure of (I). H atoms have been omitted, except for those involved in hydrogen bonds (dashed lines). [Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 1 + x, y, z.]

of the ring from planarity. In the cyclobutane ring B, the C12/ C14/C13 plane makes an angle of 27.9 $(3)^{\circ}$ with the C12/C10/ C13 plane. Similar puckering of a cyclobutane ring has been reported previously [23.5° (Swenson et al., 1997) and 29.03 (13)° (Yüksektepe et al., 2004)].

In the crystal structure, molecules related by an inversion centre are connected by O1-H1···N1ⁱ [symmetry code: (i) 1 - x, 1 - y, 1 - z] hydrogen bonds, forming dimers (Fig. 2). These dimers are interlinked by O2-H2A···O1ⁱ and C16-H16···O2ⁱⁱ [symmetry code: (ii) 1 + x, y, z] hydrogen bonds involving the ethanol solvent molecule. There is also a C- $H \cdots \pi$ interaction between ring A and atom H22(C22) of ring E, the distance between H22 and the centroid Cg1 of ring E being 2.90 Å [symmetry code: 1 - x, -y, 1 - z], and the C22-H22···Cg1 angle being 136° .

Experimental

Compound (I) was synthesized by the following procedure. To a solution of benzoin (2.1224 g, 10 mmol) in ethanol (50 ml), thiosemicarbazide (0.9113 g, 10 mmol) was added in portions. Subsequently, a solution of 1-methyl-1-mesityl-3-(2-chloro-1-oxoethyl)cyclobutane (2.6479 g, 10 mmol) in absolute ethanol (20 ml) was added. After the addition of the α -haloketone, the temperature was raised to 323-328 K and kept at this temperature for 2 h. The solution was then cooled to room temperature and made alkaline with an aqueous solution of NH₃ (5%), and the dirty-yellow precipitate which formed was separated by suction, washed several times with aqueous NH₃ solution and dried in air. Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution (yield 69%, m.p. 417 K). Spectroscopic analysis: IR (KBr, ν , cm⁻¹): 3468 (O-H), 3254 (N-H), 1609 (C=N carbazone), 1586 (C=N thiazole), 682 (C-S-C thiazole); ¹H NMR (CDCl₃, δ , p.p.m.): 1.53 (s. 3H. -CH₃ on cyclobutane), 2.14 (s, 1H, -NH-), 2.17 (s, 1H, -OH), 2.21 (s, 9H, -CH₃ on mesitylene), 2.44-2.59 (m, 4H, -CH₂- on cyclobutane), 3.34 (q, J = 9.1 Hz, 1H, >C-H on cyclobutane), 6.12 (s, 1H, =CH-S), 6.25 (s, 1H, -H on benzoin), 6.74 (s, 2H, aromatics on mesitylene), 7.25-7.42 (m, 8H, aromatics), 7.69 (dd, J = 2.2 Hz, 2H, aromatics).

Crystal data

$C_{31}H_{33}N_3OS \cdot C_2H_6O$	V = 1492.0 (3) Å ³
$M_r = 541.76$	Z = 2
Triclinic, $P\overline{1}$	$D_x = 1.206 \text{ Mg m}^{-3}$
a = 9.0997 (11) Å	Mo $K\alpha$ radiation
b = 9.9104 (14) Å	$\mu = 0.14 \text{ mm}^{-1}$
c = 17.540 (2) Å	T = 296 K
$\alpha = 92.876 \ (10)^{\circ}$	Prism, colourless
$\beta = 100.365 \ (10)^{\circ}$	$0.32 \times 0.22 \times 0.16 \text{ mm}$
$\nu = 105.410 \ (10)^{\circ}$	

Data collection

Stoe IPDS 2 diffractometer (i) scans Absorption correction: integration

(X-RED32; Stoe & Cie, 2002) $T_{\min} = 0.955, T_{\max} = 0.986$

Refinement

Table 1

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.050$	$w = 1/[\sigma^2(F_0^2) + (0.0438P)^2]$
$wR(F^2) = 0.107$	where $P = (F_0^2 + 2F_c^2)/3$
S = 0.87	$(\Delta/\sigma)_{\rm max} = 0.015$
5247 reflections	$\Delta \rho_{\rm max} = 0.22 \ {\rm e} \ {\rm \AA}^{-3}$
358 parameters	$\Delta \rho_{\rm min} = -0.20 \ {\rm e} \ {\rm \AA}^{-3}$

13616 measured reflections

 $R_{\rm int} = 0.067$

 $\theta_{\rm max} = 25.0^{\circ}$

5247 independent reflections

2724 reflections with $I > 2\sigma(I)$

	_		, <u>e</u>		
Selected	geometric	parameters	(A	0)	
Sciected	geometric	parameters	(1 1,		· • .

1.716 (3)	N2-N3	1.363 (3)
1.730 (3)	N2-C17	1.364 (3)
1.306 (3)	N3-C18	1.279 (3)
1.385 (3)		
88.17 (14)	C18-N3-N2	120.6 (2)
109.9 (2)	N3-C18-C26	114.5 (2)
117.2 (2)	N3-C18-C19	126.6 (2)
179.4 (3)	N2-N3-C18-C19	1.3 (5)
· · ·	N3-C18-C19-O1	-35.3(4)
176.6 (2)		()
	1.730 (3) 1.306 (3) 1.385 (3) 88.17 (14) 109.9 (2) 117.2 (2) 179.4 (3) 5.8 (4)	$\begin{array}{cccccccc} 1.730 & (3) & N2-C17 \\ 1.306 & (3) & N3-C18 \\ 1.385 & (3) & & & \\ 88.17 & (14) & C18-N3-N2 \\ 109.9 & (2) & N3-C18-C26 \\ 117.2 & (2) & N3-C18-C19 \\ & & & \\ 179.4 & (3) & N2-N3-C18-C19 \\ & & & \\ 5.8 & (4) & N3-C18-C19-O1 \end{array}$

Table 2 Hydrogen-bond geometry (Å, °).
--

$D - \mathbf{H} \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1 - H1 \cdots N1^i$	0.84	1.84	2.674 (3)	172
$O2-H2A\cdots O1^{i}$	0.82	2.12	2.913 (4)	163
$N2-H2\cdots O1$	0.86	2.06	2.642 (3)	126
$C16-H16\cdots O2^{ii}$	0.93	2.49	3.412 (4)	177

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x + 1, y, z.

The hydroxy H atoms were located in a difference map. The other H atoms were placed in idealized positions, with C-H = 0.93-0.98 Å and N-H = 0.86 Å. All H atoms were then treated as riding, with $U_{\rm iso}(\rm H) = 1.2U_{eq}(\rm C,N)$, or $1.5U_{eq}(\rm C,O)$ for methyl and hydroxy groups.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

- Ahmedzade, M., Çukurovali, A. & Koparır, M. (2003). J. Chem. Soc. Pak. 25, 51–55.
- Coghi, L., Lanfredi, A. M. M. & Tripicchio, A. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 1808–1810.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Galiano-Roth, A. & Collum, D. B. (1988). J. Am. Chem. Soc. 110, 3546-3553.
- Jensen, R. E. & Pflaum, R. T. (1967). Anal. Chim. Acta, 37, 397-400.
- Katyal, M. & Dutt, G. (1975). Talanta, 22, 151-166.
- Koparır, M., Cansız, A., Ahmedzade, M. & Çetin, A. (2004). *Heteroat. Chem.* **15**, 26–31.
- Sahni, S. K., Sangal, S. K., Gupta, S. P. & Rana, V. B. (1977). J. Inorg. Nucl. Chem. 39, 1098–1100.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.
- Swenson, D. C., Yamamoto, M. & Burton, D. J. (1997). Acta Cryst. C53, 1445– 1447.
- Williams, D. R. (1972). Chem. Rev. 72, 203-213.
- Yüksektepe, Ç., Saraçoğlu, H., Koca, M., Çukurovali, A. & Çalışkan, N. (2004). Acta Cryst. C60, o509–o510.
- Zollinger, H. (1991). Colour Chemistry: Syntheses, Properties and Applications of Organic Dyes and Pigments, 2nd ed. Weinheim: VCH.